
LECTURE 31 APPLIED OPTIMIZATION AND NEWTON'S METHOD

Applied Optimization

(1) Read the problem statements very carefully.
(2) Identify the known quantity and relationship (known as the constraints).
(3) Introduce all variables. If applicable, draw a �gure and label all variables. Write down their possible

range of values.
(4) Identify what you need to optimize (in physical terms, such as area, volume, total cost, etc.). Some-

times this is given clearly. Sometimes, you need to interpret.
(5) Express what you need to optimize in the simplest manner possible, which may involve multiple

variables.
(6) Shrink the number of variables by using the known quantity and relationship.
(7) Do calculus to �nd absolute optima.

Example. Design a one-liter (1000 cubic centimeters) can shaped like a right circular cylinder. What
dimensions will use the least material?

Solution. Volume of the cylinder can be computed when we know the radius of the base circle r and the
height of the cylinder h. In this problem, they are related by

πr2h = 1000.

At the same time, the material one uses pertains to the total surface area of the cylinder, that is,

S = 2πrh+ 2πr2.

The volume equation is �xed, and thus known as the constraint of the optimization problem. Constraints
usually give us some information about how the variables are related. Looking at the surface area equation
(which we want to minimize), we found independent variables r and h. It is always easier to deal with one
variable than two. Luckily, the volume equation gives us the dependence between r and h, i.e.

h =
1000

πr2
.

Then, we can express

S = S (r) = 2πr
1000

πr2
+ 2πr2 =

2000

r
+ 2πr2

where we now �nd the minimum of this function.
We �rst locate the critical points.

S′ (r) = −2000

r2
+ 4πr = 0 =⇒ r =

3

√
500

π
.

To check if it is a local minimum, we either do 1st derivative test or 2nd. We opt for the 2nd derivative test,

S′′ (r) =
4000

r3
+ 4π > 0

for all r > 0. Therefore, r = 3

√
500
π is a local minimizer, and in fact, global minimizer (since there are no

more critical points).

Example. A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area the rectangle
can have, and what are its dimensions?

Solution. First, the area of a (unconstrained) rectangle is given by

A = 2xy
1
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where x is half of length and y is width/height. Now, we need this point (x, y) to live on a circle of radius
2, that is,

x2 + y2 = 4 =⇒ y =
√

4− x2.
This relationship reduces the area formula to only depend on one variable,

A (x) = 2x
√

4− x2.
We now simply maximize A (x) on [0, 2] (why [0, 2]?)

A′ (x) = 2
√

4− x2 − 2x2√
4− x2

= 0 =⇒ x = ±
√
2.

We evaluate x =
√
2 (reject the other because it is not in our domain) and the endpoints,

A (0) = 0 = A (2)

and

A
(√

2
)
= 2
√
2
√
4− 2 = 4.

This implies that the maximum area is 4 when the rectangle is
√
2 units high and 2x = 2

√
2 units long.

Example. An island is 2 miles due north of its closest point along a straight shoreline. A visitor is staying
at a cabin on the shore that is 6 miles west of that point. The visitor is planning to go from the cabin to
the island. Suppose the visitor runs at a rate of 8 miles and swims at a rate of 3 miles. How far should the
visitor run before swimming to minimize the time it takes to reach the island?

Solution. We want to minimize total time T . This time consists of running time Trun and swimming time
Tswim via

T = Trun + Tswim.

Now, suppose we run x miles on the shore and swim y miles in the water. Then we have

T =
x

8
+
y

3
.

All we need now is a relationship between x and y so that this problem becomes one-dimensional. Note
that wherever you hit the water, you are horizontal 6− x miles from the island and vertically 2 miles. The
hypotenuse of this right triangle is the distance you swim. Therefore,

y2 = (6− x)2 + 22 =⇒ y =

√
(6− x)2 + 4.

Plugging this into total time, we have

T (x) =
x

8
+

√
(6− x)2 + 4

3
, x ∈ [0, 6] .

We �nd critical points which satisfy

0 = T ′ (x) =
1

8
− 6− x

3

√
(6− x)2 + 4

=⇒ 3

√
(6− x)2 + 4 = 8 (6− x)

=⇒ 9 (6− x)2 + 36 = 64 (6− x)2 =⇒ 55 (6− x)2 = 36

=⇒ (6− x)2 =
36

55
=⇒ x = 6± 6√

55

We reject x = 6 + 6√
55

since it's outside out domain. Now, we evaluate the endpoints.

T (0) =

√
40

3
=

4

3

√
10 =

16
√
10

12

T (6) =
3

4
+

2

3
=

3

4
+

8

12
=

17

12

T

(
6− 6√

55

)
=

3

4
− 3

4
√
55

+
16

3
√
55

=
3

4
+

1√
55

(
16

3
− 3

4

)
=

3

4
+

√
55

12
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Clearly, T (0) > T (6) > T
(
6− 6√

55

)
, which means T

(
6− 6√

55

)
is the absolute minimum.

Newton's Method

Finding zeros of an equation is particularly important, exempli�ed in the previous section on applied
optimization, where we are required to �nd the critical points of a function, i.e. the zeros of the derivative.

We also have some experience in �nding zeros of particular types of functions. For quadratic polynomials,
we have the quadratic formula to �nd the roots, or at least the discriminant to determine whether there is
a root or not. For cubic polynomials, we also have a discriminant, but it gets complicated. For higher order
polynomials or even nonlinear functions, we don't always have an easy formula for their zeros. A numerical
approach must be implemented to approximate the location of the zero.

Newton's method relies on the fact that the function can be locally approximated by its tangent line/linearisation.
At a point x = x0,

f (x) ≈ L (x) = f (x0) + f ′ (x0) (x− x0) .
Now, �nding the zero x1 of a line is extremely straightforward, namely,

0 = L (x1) = f (x0) + f ′ (x0) (x1 − x0) =⇒ x1 − x0 = − f (x0)
f ′ (x0)

=⇒ x1 = x0 −
f (x0)

f ′ (x0)

given that f ′ (x0) 6= 0. Cool! We just found the zero x1 of the linear approximation of f (x) at x0. Since it
is an approximation, the zero of L (x) and f (x) are likely not the same. But now, we are going to apply the
same method by �nding the zero x2 of the linearisation of f (x) at x1, that is, we obtain

x2 = x1 −
f (x1)

f ′ (x1)

given that f ′ (x1) 6= 0. This means, at the nth step, we have something like

xn+1 = xn −
f (xn)

f ′ (xn)

where xn+1 is the root of the linearisation of f (x) at x = xn. At each stage, we check the absolute di�erence
between xn+1 and xn. If it is not so big, say, below a tolerance level, we then have found the zero of f (x).

Magic? Why does the sequential error |xn+1 − xn| become small? Is it always the case? Convergence
proof will require knowledge from Calculus II. Stay tuned!

Let's make sure we know how to use the iterative formula as above.

Example. Suppose we want to �nd the root of f (x) = x2 − 2 on [0, 2]. Now, this has a known solution

x =
√
2. Can we showcase how good Newton's method is? Newton's method always starts with an initial

guess, whose goodness may be guaranteed by the intermediate value theorem, which you apply to narrow
down the search space. Suppose, we set

x0 = 1.

We �nd that f ′ (x) = 2x. So our formula becomes,

xn+1 = xn −
x2n − 2

2xn
=
xn
2

+
1

xn
.

We �nd

x1 =
x0
2

+
1

x0
=

3

2
.

Then, we continue,

x2 =
x1
2

+
1

x1
=

3

4
+

2

3
=

17

12
≈ 1.41667

and lastly

x3 =
x2
2

+
1

x2
=

17

24
+

12

17
=

577

408
≈ 1.41422.

The true answer
√
2 ≈ 1.41421. So within three steps of iteration, we are accurate up to 5 digits!
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Remark. Remember the formula

xn+1 = xn −
f (xn)

f ′ (xn)
.

The function is almost always given, and the initial guess x0 is sometimes given (if not, then you give your
own). Therefore, all you have to do is to �nd f ′ (x), simplify the formula if possible, and then evaluate many
times. You will be asked to compute several iterations of the method.


